散布図と折れ線グラフ

a01 <- read_csv("weight.csv",show_col_types = FALSE)
ggplot(a01)+geom_line(aes(x = A,y = B) )

ggplot(a01)+geom_line(aes(x = A,y = B) ) + labs(x="height",y="weight")

ggplot(a01,aes(x=A,y=B)) +
  geom_point() +
  geom_line() +
  theme(text = element_text(size=16) )

棒グラフ

a02 <- read_csv("long.csv",show_col_types = FALSE)
ggplot(a02) +
  geom_bar(aes(x= subject))

a03 <- read_csv("freq.csv", show_col_types=FALSE)
ggplot(a03) +
  geom_bar(aes(x = name, y = freq), stat="identity")
ggplot(a03, aes(x = name, y = freq, fill= name) ) +
  geom_bar(stat="identity")
a04 <- read_csv("group.csv",show_col_types = FALSE)
ggplot(a04, aes(x = group, y = value, fill=name) ) +
  geom_bar(stat="identity")
ggplot(a04, aes(x = group, y = value, fill=name) ) +
  geom_bar(stat="identity", position = "fill")

箱ひげ図

ggplot(a02) +
  geom_boxplot(aes(x = subject, y = score ) )

積み上げ棒グラフと円グラフ

ggplot(a04,aes(x=group, y = value, fill = name) ) +
  geom_bar(stat = "identity", position = "fill")
p1 <- ggplot(a03,aes(x="", y = freq, fill = name) ) +
  geom_bar(stat="identity", position= "fill") +
  geom_text(aes(label=freq, y=pos1))
p1
p2 <- p1 + 
   coord_polar("y", direction=-1) +
   theme_void()
p2

関数

ggplot(data.frame(c(0,2*pi) ) ) + geom_function(fun = sin)
mysin <- function(x,a=1,b=-pi/2) sin(a*x + b)
ggplot()+xlim(0,2*pi)+labs(x="x")+
  geom_function(fun=sin,col="red")+
  geom_function(fun=mysin ,args=list(a=1,b=pi/2))
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7ciBsaWJyYXJ5LCBpbmNsdWRlPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpgYGANCg0KIyMg5pWj5biD5Zuz44Go5oqY44KM57ea44Kw44Op44OVDQoNCmBgYHtyIHBvaW50fQ0KYTAxIDwtIHJlYWRfY3N2KCJ3ZWlnaHQuY3N2IixzaG93X2NvbF90eXBlcyA9IEZBTFNFKQ0KZ2dwbG90KGEwMSkrZ2VvbV9saW5lKGFlcyh4ID0gQSx5ID0gQikgKQ0KYGBgDQoNCmBgYHtyIGxpbmV9DQpnZ3Bsb3QoYTAxKStnZW9tX2xpbmUoYWVzKHggPSBBLHkgPSBCKSApICsgbGFicyh4PSJoZWlnaHQiLHk9IndlaWdodCIpDQpgYGANCg0KYGBge3IgbGluZXNwb2ludH0NCmdncGxvdChhMDEsYWVzKHg9QSx5PUIpKSArDQogIGdlb21fcG9pbnQoKSArDQogIGdlb21fbGluZSgpICsNCiAgdGhlbWUodGV4dCA9IGVsZW1lbnRfdGV4dChzaXplPTE2KSApDQpgYGANCg0KIyMg5qOS44Kw44Op44OVDQoNCmBgYHtyIGJhcjF9DQphMDIgPC0gcmVhZF9jc3YoImxvbmcuY3N2IixzaG93X2NvbF90eXBlcyA9IEZBTFNFKQ0KZ2dwbG90KGEwMikgKw0KICBnZW9tX2JhcihhZXMoeD0gc3ViamVjdCkpDQpgYGANCg0KYGBge3IgYmFyMn0NCmEwMyA8LSByZWFkX2NzdigiZnJlcS5jc3YiLCBzaG93X2NvbF90eXBlcz1GQUxTRSkNCmdncGxvdChhMDMpICsNCiAgZ2VvbV9iYXIoYWVzKHggPSBuYW1lLCB5ID0gZnJlcSksIHN0YXQ9ImlkZW50aXR5IikNCmBgYA0KDQpgYGB7ciBiYXIzfQ0KZ2dwbG90KGEwMywgYWVzKHggPSBuYW1lLCB5ID0gZnJlcSwgZmlsbD0gbmFtZSkgKSArDQogIGdlb21fYmFyKHN0YXQ9ImlkZW50aXR5IikNCmBgYA0KDQpgYGB7ciBiYXI0fQ0KYTA0IDwtIHJlYWRfY3N2KCJncm91cC5jc3YiLHNob3dfY29sX3R5cGVzID0gRkFMU0UpDQpnZ3Bsb3QoYTA0LCBhZXMoeCA9IGdyb3VwLCB5ID0gdmFsdWUsIGZpbGw9bmFtZSkgKSArDQogIGdlb21fYmFyKHN0YXQ9ImlkZW50aXR5IikNCmBgYA0KDQpgYGB7ciBiYXI1fQ0KZ2dwbG90KGEwNCwgYWVzKHggPSBncm91cCwgeSA9IHZhbHVlLCBmaWxsPW5hbWUpICkgKw0KICBnZW9tX2JhcihzdGF0PSJpZGVudGl0eSIsIHBvc2l0aW9uID0gImZpbGwiKQ0KYGBgDQoNCiMjIOeuseOBsuOBkuWbsw0KDQpgYGB7ciBib3hwbG90fQ0KZ2dwbG90KGEwMikgKw0KICBnZW9tX2JveHBsb3QoYWVzKHggPSBzdWJqZWN0LCB5ID0gc2NvcmUgKSApDQpgYGANCg0KIyMg56mN44G/5LiK44GS5qOS44Kw44Op44OV44Go5YaG44Kw44Op44OVDQoNCmBgYHtyIGN1bV9iYXIxfQ0KZ2dwbG90KGEwNCxhZXMoeD1ncm91cCwgeSA9IHZhbHVlLCBmaWxsID0gbmFtZSkgKSArDQogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCBwb3NpdGlvbiA9ICJmaWxsIikNCmBgYA0KDQpgYGB7ciBjdW1fYmFyMn0NCnAxIDwtIGdncGxvdChhMDMsYWVzKHg9IiIsIHkgPSBmcmVxLCBmaWxsID0gbmFtZSkgKSArDQogIGdlb21fYmFyKHN0YXQ9ImlkZW50aXR5IiwgcG9zaXRpb249ICJmaWxsIikgKw0KICBnZW9tX3RleHQoYWVzKGxhYmVsPWZyZXEsIHk9cG9zMSkpDQpwMQ0KYGBgDQoNCmBgYHtyIHBpZX0NCnAyIDwtIHAxICsgDQogICBjb29yZF9wb2xhcigieSIsIGRpcmVjdGlvbj0tMSkgKw0KICAgdGhlbWVfdm9pZCgpDQpwMg0KYGBgDQoNCiMjIOmWouaVsA0KDQpgYGB7ciBzaW59DQpnZ3Bsb3QoZGF0YS5mcmFtZShjKDAsMipwaSkgKSApICsgZ2VvbV9mdW5jdGlvbihmdW4gPSBzaW4pDQpgYGANCg0KYGBge3IgbXlzaW59DQpteXNpbiA8LSBmdW5jdGlvbih4LGE9MSxiPS1waS8yKSBzaW4oYSp4ICsgYikNCmdncGxvdCgpK3hsaW0oMCwyKnBpKStsYWJzKHg9IngiKSsNCiAgZ2VvbV9mdW5jdGlvbihmdW49c2luLGNvbD0icmVkIikrDQogIGdlb21fZnVuY3Rpb24oZnVuPW15c2luICxhcmdzPWxpc3QoYT0xLGI9cGkvMikpDQpgYGANCg==